
International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1460
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

ESTIMATION OF ASPECT ORIENTED PROGRAMMING USING DIFFERENT
METRICES

 Annu
Student, M.Tech
Deptt. Of Computer Sc., Indo Global college of engineering
Abhipur,Mohali.
daulta.anu@gmail.com

abstract: amongst all the approaches which are available of interconnectivity between the
software modules, which approach or structure is clearly defined in ways of some object oriented
metrics.we have collected few software metrics to analyze the software quality under structural
analysis. Aspect Oriented programming generates the software modules under new perspective
called aspects. Aspect basically defines the function or the event of the software system that
itself collect number of attributes and functions incorporated to the individual entity. The
structural analysis mechanism is performed to analyze individual component of the software
system. Once the individual module analysis is performed, at second stage, the module
interaction analysis takes place. In the final stage, the collaborative analysis of all these modules
takes place to perform the system integration analysis. In this section, analysis of complete
software quality takes place.

KEYWORDS: Aspect oriented,software metrices,functional point

I. INTRODUCTION

Measurement is introduced by information technology organizations to better understand,
evaluate, control and predict software processes. Measurement as the process by which numbers
or symbols are assigned to attributes of entities in the real world in such a way as to describe
them according to clearly defined rules. Data is collected on the basis of development issues,
concerns, and questions. Then analysis is done according to the software development process
and products. The measurement process is used to find the quality, progress, and the
performance of the software throughout all life cycle phases. This measurement process consists
of collecting and receiving the actual data. The key components of an effective measurement
process are:
 The software development issues are clearly defined and the measures are required to provide
insight into those issues.
 Processing of data which has been collected into graphical or tabular reports (indicators) to
help in issue analysis.
 Indicators are analyzed to provide insight into development issues
 Implement of process improvements is done on the basis of analyzed results and then new
issues and problems are identified.

IJSER

http://www.ijser.org/
mailto:daulta.anu@gmail.com

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1461
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

A) Software Measurement
Measurement can be divided into two ways: - (a) Direct measures: It includes software process
(e.g., cost and effort applied) and product (e.g., lines of code (LOC) which are produced,
execution speed, and defect rate)[3][4].
(b) Indirect measures: It includes the product functionality, complexity, efficiency, reliability,
maintainability and many others(R. S. Pressman,2005). In software engineering, a measure gives
a quantitative indication of the amount, dimension, capacity, or size of some attribute of a
process or product. Measurement is to determine a measure. The ultimate goal of software
measurement is not just to find measures, its goal also consists to build and validate the
hypotheses and increase the body of knowledge about software engineering. This body of
knowledge is further used to understand, monitor, control, and improve the software products
and processes. So to build measure is a necessary part of measurement, but it’s not the end result.
It is also used to improve the quality of product/process[5][6].

B) Software Metrics
Metrics which are used to evaluate the software processes, products and services is referred to as
the software metrics. Metrics can help the management as well as the engineers to maintain their
focus on their goals. Software metrics programs should be designed as such that they give
specific information which is necessary to manage software projects and enhance the quality
software engineering processes and services. Organizational, projects, and the goals are
determined in advance and then the metrics are taken on the basis of those goals. These metrics
are used to determine the effectiveness in achieving the goals. Traditional design techniques
separate data and procedures on the other hand object-oriented designs combine these. There are
multiple dimensions which are there in OO metric if it is to provide accurate effort prediction or
productivity tracking. It is necessary to measure the amount of raw functionality a software
offers, at the same time it is equally important to include information about communication
which is there between the objects and reuse through inheritance in the „size‟ as well[6][7].
In this section, the exploration of the Software measurement process is defined. The metric based
analysis of the software system for aspect oriented programs is discussed in this section. In
section II, the work defined by the earlier researchers is discussed. In section III, different
Metrics associated with aspect oriented programming is discussed. In section IV, the conclusion
obtained from the work is presented.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1462
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 II.CLASSIFICATION OF SOFTWARE METRICS

standard to find and predict the quality of the current product or Software metrics are standards
to determine the size of an attribute of a software product and at the same time to evaluate it(R.
S. Pressman,2005). In different phases of software, metrics can be grouped as Process metrics,
Product metrics, and Resource metrics. These metrics are described as follows: -
A) Product type metrics:
It measures the products of software. Example: source code and design documents. There is a
wide range of metrics to measure the software product. Product metrics are defined as the
measure of product's external attributes or its internal attributes (Gurdev Singh,2011). Product
performance is basically the measure of external attributes in the actual environment where the
product has to actually run. These measures consist of software usability and re-usability,
portability and efficiency. Example of internal product attributes are: size of the software,
correctness, complexity, bugs and testability[8].

B) Process type metrics:
It measures the development of software process. Ex: type of methodology, overall development
time, number of changes made to documents and number of bugs recovered during testing. An
example of process metrics is Source Line of Code (SLOC) metric(Gurdev Singh,2011). This
metric only count the lines of source code, by counting it can give an indication of effort made to
develop that code.

C) Resource metrics:
These metrics are more concerned with the managers for the estimation of resources which are
required for software project. These resources are man-powers (developers), physical resources,
for example, material, computers and methods. These metrics can be also classified under
process metrics class(R. S. Pressman,2005).

 III SOFTWARE METRICS
Metrics are a tool for quality control and project management. Procedure oriented metrics are
used to measure different attributes of a project or the smaller piece of code. Example, a metric
available may measure the number of code lines, the amount of comments and the complexity of
code. Metrics are helpful in finding areas that are more prone to problems. Metrics can be
tracked across multiple team or they can be used to monitor the development of a single
system[9][10][11].

A) LOC
Lines of code (or LOC) are the most widely used metric for measuring the size of the program.
This metric is used to measure the quantitative characteristics of program source code. This
metric is used to count the lines of the source code(R. S. Pressman,2005). LOC is defined as the
count of any line that is not a blank or comment line, irrespective of the number of statements
per line. LOC is programming language dependent and is commonly used software size metric.
Levitin has stated that LOC is a poorer measure of size than Halstead‟s program length, N.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1463
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

B) Functional Point
This metric was developed by Albrecht(Albrecht,1983). He has proposed a measure of software
size which can be determined early in the development process. Function points are intended to
be a measure of program size and the effort required for development.

Complexity function
type

low average High

External input 3 4 6
External output 4 5 7
Internal logical files 7 10 15
External interface
files

5 7 10

External inquiries

3 4 6

 Table1: Weighting factors

This approach calculates the total function points (FP) value for the project, which is dependent
on the counts of distinct (in terms of format or processing logic) types in the following five
classes input, output, external interface files, internal files, and external inquiries(R. S.
Pressman,2005).
FP = count total * [0.65 + 0.01 * (Fi)]
Here count total is the sum of all FP entries and Fi (i = 1 to 14) are "complexity adjustment
values."
After the calculation of function points they are used in a manner analogous to LOC as a way to
normalize measures for software quality, productivity and the other attributes:
• Errors per FP.
• Defects per FP.
• FP per person-month.

Function points and LOC based metrics are considered to be relatively accurate predictors of
software development effort and cost.

C) Cyclomatic Complexity
Thomas McCabe introduced a metric in 1976 which was based on the control flow structure of a
program(Albrecht,1983). This metric is called as the McCabe cyclomatic complexity and it is the
most widely used complexity metric throughout. Given any computer program, McCabe method
maps a program to connected an a directed graph. The nodes in the graph are used to represent
decision or control statements. The edges represent the control paths which define the program
flow(T. J. McCabe,1976). Cyclomatic complexity is calculated by the following method:
V (G) = e − n + 2

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1464
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Where e represents the number of edges, and n are the number of nodes present in the graph.
McCabe proposed that v (G) can be used as a measure of program complexity. McCabe‟s
Cyclomatic complexity metric is related to debugging performance, programming effort and the
maintenance effort. Programs which consists of only binary decision nodes we do not construct a
program control graph to compute v (G) (R. S. Pressman,2005). We only count the number of
predicates or binary nodes and we add one to it.
V (G) = p +1
Where, v (G) is defined as the Cyclomatic Complexity, and p here denotes the number of binary
nodes or predicates. McCabe compared his Cyclomatic complexity with the frequency of errors
and suggested the following relationship between Cyclomatic complexity and code complexity
for a function.

Cyclomatic Complexity

Code Complexity

1-10 A simple program, without much risk

11-20 More complex, moderate risk

21-50 Complex, high risk
50+ Untestable, very high risk

 Table 2. McCabe Cyclomatic complexity ranges

IV. CONCLUSION
In this paper, a study different metrics associated with a software project are discussed. These are
the core metrics that are used to analyze the software system for aspect oriented as well as object
oriented software systems.

REFERENCES
[1] Albrecht, A. J. and J. E. Gaffney. Jr.(1983) “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation”, IEEE Trans. Software Eng. SE-
9, Nov. 1983.
[2] Barry W. Boehm, University of Southern California, Ricardo Valerdi, (2008)” Achievements
and Challenges in Cocomo- Based Software Resource Estimation”, IEEE Transactions on
Software Engineering.
[3] Chhikara,Chhillar, and Khatri, (2011)”Evaluating the Impact of Different Types of
Inheritance on the Object Oriented Software metrics”, International Journal of Enterprise
Computing and Business Systems ISSN: 223-8849 Volume 1 Issue 2.
[4] DeMarco, Tom, "Controlling Software Projects", Yourdon Press, New York, 1986.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, April-2015 1465
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[5] E Da-wei and Xiamen, (2007)” The Software Complexity Model and Metrics for Object-
Oriented”,IEEE Transactions on Software Engineering.
[6] Elaine J. Weyuker,(2001)”Evaluating Software Complexity Measures”, IEEE Transactions
on Software Engineering.
[7] Geoffrey K. Gill and Chris F. Kemerer,(1991)” Cyclomatic Complexity Density and
Software
Maintenance Productivity”, IEEE Transactions on Software Engineering, vol. 17, no. 12,
December 1991
[8] Gurdev Singh, Dilbag Singh, and Vikram Singh,(2011)” A Study of Software metrics”,
IJCEM International Journal of Computational Engineering & Management, Vol. 11, January
[9] Lalji Prasad, and Aditi Nagar, (2009)” Experimental Analysis of Different Metrics (Object-
Oriented and Structural) Of Software” First International Conference on Computational
Intelligence.
[10] Linda L. Westfall Principle Software Measurement Services Plano, TX 75075,” Seven Steps
to Designing a Software Metric.

IJSER

http://www.ijser.org/

